Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice.

نویسندگان

  • Itaro Hattori
  • Yasushi Takagi
  • Hajime Nakamura
  • Kazuhiko Nozaki
  • Jie Bai
  • Norihiko Kondo
  • Toshiyuki Sugino
  • Masaki Nishimura
  • Nobuo Hashimoto
  • Junji Yodoi
چکیده

Thioredoxin (TRX) is induced by a variety of oxidative stimuli and shows cytoprotective roles against oxidative stress. To clarify the possibility of clinical application, we examined the effects of intravenously administered TRX in a model of transient focal cerebral ischemia in this study. Mature male C57BL/6j mice received either continuous intravenous infusion of recombinant human TRX (rhTRX) over a range of 1-10 mg/kg, bovine serum albumin, or vehicle alone for 2 h after 90-min transient middle cerebral artery occlusion (MCAO). Twenty-four hours after the transient MCAO, the animals were evaluated neurologically and the infarct volumes were assessed. Infarct volume, neurological deficit, and protein carbonyl contents, a marker of protein oxidation, in the brain were significantly ameliorated in rhTRX-treated mice at the dose of 3 and 10 mg/kg versus these parameters in control animals. Moreover, activation of p38 mitogen-activated protein kinase, whose pathway is involved in ischemic neuronal death, was suppressed in the rhTRX-treated mice. Further, rhTRX was detected in the ischemic hemisphere by western blot analysis, suggesting that rhTRX was able to permeate the blood-brain barrier in the ischemic hemisphere. These data indicate that exogenous TRX exerts distinct cytoprotective effects on cerebral ischemia/reperfusion injury in mice by means of its redox-regulating activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the Oral Ingestion of Probiotics on Brain Damage in a Transient Model of Focal Cerebral Ischemia in Mice

Background: Probiotics are microorganisms that may influence brain function via altering brain neurochemistry. New research evidence suggests that probiotic bacteria might protect tissue damage through diminishing the production of free radicals and/or inflammatory cytokines. Therefore, this study was designed to evaluate the effects of probiotic bacteria on the prevention or reduction of brain...

متن کامل

The Effect of Enalapril on Brain Edema and Cytokine Production Following Transient Focal Cerebral Ischemia in Mice

Introduction: Cytokines production as one of the inflammatory pathways in CNS is responsible for most brain damages following ischemia. On the other hand, during inflammation and brain ischemia, most of the renin- angiotensin components (RAS) increase locally. While it is established that blockade of RAS especially AT1 receptors has a protective effect on ischemia, the interaction of cytokines ...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Effect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia

Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...

متن کامل

P18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia

Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2004